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Abstract 

Real time data collection in traffic engineering is crucial for better traffic corridor control and management.  In the 
literature, many data collection methods have been used such as; magnetic loops, road tube counters, piezo sensors, 
radars, Bluetooth etc. to estimate the link occupancy, average speed or density of a corridor. More recently, Floating 
Car Data (FCD) has become another important traffic data source and has an increasing usage due to its lower cost 
and higher coverage despite its reliability problems. FCD obtained from GPS equipped vehicles moving in the traffic 
can provide speed or travel speed data for many segments for even 1-min intervals in real-time. Though not totally 
diverse providing more than one of the traffic flow parameters, measuring the effectiveness of this extensive data 
source in detecting some critical urban traffic states is the ultimate goal of this study. As a case study, 1-min interval 
FCD for an urban arterial in Ankara has been collected during the morning peak hour for 2 months. Average speed 
values were transformed into a qualitative 4-scale state parameter based on the Level of Service (LOS) definitions for 
urban roads. Pattern searches over consecutive segment states using different search length (i.e. 2 segments, 3 
segments, etc.) showed that FCD is capable to detect recurrent congestion or bottleneck locations, and even have an 
idea about the length of queue formed before the bottlenecks.   
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1. Introduction 

Accurate and reliable estimation of the traffic state in urban arterial roads is a crucial part of traffic management 

and control. Traditionally, a variety of traffic data sources (magnetic loops, road tube counters, radar, Bluetooth) have 

been used to estimate traffic parameters such as link occupancy, average speed and corridor density. Ultimately, these 

parameters are combined to estimate traffic state (or characteristics) based on the fundamental relationship between 

flow, density, and speed. This relationship enables identification of different traffic states (congested, free-flow, etc.) 

and events (i.e. entering or exiting from a queue/bottleneck, shockwave propagation, etc.).  

More recently, another data source, Floating Car Data (FCD), has been increasingly in use. This is mainly due to 

its lower cost and higher coverage, despite reliability problems. The principle of FCD is to collect real-time traffic 

data, by locating the vehicle via mobile phones or GPS over the entire road network. Data such as car location, speed 

and direction of travel are sent anonymously to a central processing center. This information is then processed, in order 

to derive travel time or average speeds through road segments. If taken from a single probe vehicle, speed and position 

data can be obtained periodically (e.g.1 or 5 mins) for each road segment (Xu et. al., 2013). However, data from a 

vehicle fleet is generally preprocessed to obtain segment speed (or travel time) only. As GPS has become increasingly 

common, it has typically been used to monitor fleet management services (such as taxi drivers, and trucks), with taxi 

fleets being particularly useful due to their high number and on-board communication systems in urban regions (Leduc, 

2008). Traffic data obtained from private vehicles tend to be more suitable for motorways and rural areas.  

It is claimed that FCD for Turkey is obtained from 600,000 GPS-equipped vehicles. When the total number of 

vehicles in Turkey considered, which is around 19 million, this corresponds to an approximately 3% penetration rate. 

Data from these vehicles provide an opportunity to study FCD with respect to traffic state recognition and congestion 

detection for urban arterial roads in Turkey, which forms the focus of this study. Traffic patterns are defined following 

the Level of Service (LOS) definition, based on segment speed on urban arterial roads (HCM, 2010). Complexity and 

precision of any estimation model depends on the availability of diverse and extensive data. While FCD data is 

extensive, the extent of its diversity is debatable in terms of being able to estimate more than one traffic flow parameter. 

Perhaps a more interesting research question is the evaluation of the necessity and cost of estimating more than one 

traffic flow parameter in urban networks, which requires elaborate data collection or data combination techniques from 

various traffic data sources. While it is possible and worthwhile to collect data on heavily used intercity corridors via 

consecutively installed multiple sensors/sources, it is not economically possible to furnish all major roads in a city 

with sensors, nor computationally simple to rapidly analyse data in urban networks. Therefore, it is necessary to 

evaluate the power and limits of using FCD alone for detecting urban patterns as a single source, which is the scope 

of this study. The main contribution of this paper will be to prove the capability of FCD as a rapid evaluation tool for 

a large amount of data obtained from extensive networks. 

In this study, based only on FCD-dependent travel time (hence speed), information was archived both quantitatively 

and qualitatively in the form of a “state” parameter. In the absence of density and flow values, the state was defined 

as a function of a decrease in the average speed compared to free-flow values, which did not exist. The scope of the 

study included detection of critical patterns such as recurrent congestion, bottleneck release locations, and segments 

suffering queueing in their upstream, etc. The structure of the paper is as follows: a brief literature review regarding 

traffic state estimation from FCD is presented in Section 2, followed by methodology in Section 3, overall results in 

Section 4, and conclusions and further recommendations in Section 5. 

2. Literature Review 

2.1. Characterization of traffic state 

Traffic state characterization studies in the literature can be generally gathered into three categories: i) 

determination of the average speed, ii) detection of congestion/bottleneck locations, and iii) determination of traffic 

flow parameters. Average speed estimation studies, which is a first step in the characterization of traffic state, is 

generally conducted in order to analyze speed profiles of the selected corridor, to examine sudden changes amongst 

consecutive segments, and to explore the statistical distribution of speeds for each road segment (Quayle et al., 2010; 

Pan et al., 2011; Shoufeng et al., 2013, Wang et al., 2014). This will later be used to identify the recurrent/non-
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recurrent congestion locations or detection of the bottleneck locations, which also have been the focus of many studies 

(Xu et al., 2013; Li et al., 2012; Reinthaler et al., 2010).  

Particularly for the determination of the relationship between traffic flow parameters, two of the three parameters 

(speed, density and flow) must be known, in order to explain the relationships between them. These kinds of studies 

involve either data collection and implementation of well-known traffic flow models to best fit the data (Zhao et al., 

2009; Anuar et al., 2015), or developing mathematical models to derive fundamental diagrams (Celikoglu and Silgu, 

2015; Celikoglu, 2013; Celikoglu, 2014). For such studies, Celikoglu (2013, 2014) obtained traffic data from the 

Remote Traffic Microwave Sensor Data (RTMS), including volume and speed data taken every 3 minutes. LOS-based 

classification was proposed for the derivation of a traffic flow fundamental diagram. Traffic data were obtained from 

the RTMS, including speed and volume parameters. Density was used as an input parameter, and a neural network-

based model was proposed for the classification of traffic patterns, with flow rate values with respect to speed for each 

LOS being obtained. In a follow-up study, Celikoglu and Silgu (2015) performed a multivariate clustering method for 

the classification of traffic patterns in the same corridor. 

2.2. Traffic state estimation using FCD  

Traffic state estimation studies for urban arterial roads are generally focused on either exclusively using FCD data, 

or combining such data with other data sources (such as the RTMS, inductive loops, video cameras, Automated 

Vehicle İdentification systems etc.) to estimate traffic state. As an example of the latter, Zhao et al. (2009) analyzed 

traffic flow characteristics on ring road expressways in Beijing using FCD and RTMS data. Average speeds were 

obtained from both data types, whilst volumes were accessed from RTMS data only. Data were combined, in order to 

derive the flow-speed relationship in the fundamental diagram. A regression analysis was performed for both RTMS 

and FCD average speeds, and showed that RTMS speed values were generally 6% higher than FCD speed values. 

Chase et al. (2012) evaluated the reported speeds obtained from 3 different kinds of traffic data: i) FCD was obtained 

from Inrix with 5-minute aggregation. Travel time, speed, average speed and reference speed data were obtained; ii) 

Microwave radar sensors with 5-min aggregation speed data. Volume and occupancy values were collected from the 

same corridor for the same study period; iii) Radar sensors, for which only speed values were obtained. Speed profiles 

showed that all data types had a similar pattern. Speed differences obtained from Inrix and microwave radar sensor 

data were compared and differences were found normally distributed. For the traffic state evaluation, Inrix speed data 

and microwave radar sensor data were combined to investigate speed-flow relationships. Similar to these studies, 

Anuar et al. (2015) used FCD and loop detectors to derive the relationship between flow and speed, and stated the 

model most closely describing this relationship was Van Aerde’s fundamental diagram. Haghani (2010) compared the 

average speed of road segments obtained from FCD and Bluetooth data. Statistical evaluation was performed for 4 

speed categories: i) below 30mph, ii) 30-45 mph, iii) 45 and 60 mph, and iv) speed above 60 mph. Bluetooth mean 

speeds were not found to be significantly different from the FCD speeds for each speed category.   

In the absence of additional data sources, in the discussion of the use of extensive FCD data to detect congestion, 

Xu et al. (2013) highlighted the issues when dealing with the enormous historical data set when endeavoring to find 

meaningful traffic and congestion patterns. They obtained FCD from 12,000 GPS-equipped taxi fleets in Wuhan city, 

China. They proposed a statistical method for data analysis (data cube management). Li et al. (2012) used 3 months 

of historical FCD to examine variabilities in average speeds, and attempted to determine congestion locations 

depending on sudden decreases in average speeds in consecutive road segments. Fabritiis et al. (2008) proposed a 

neural network-based model to estimate average speed through the sections, and to determine congestion locations of 

the two selected corridors. Kong et al. (2015) developed a fuzzy comprehensive evaluation method for identifying 

congestion locations for every 5 minutes. In contrast to these studies, Adu-Gyamfi and Sharma (2015) explored the 

reliability of probe speed data for detecting congestion trends. The study focused on pattern recognition and time 

series data analysis to identify similarities with probe-based speed data. Reinthaler et al. (2010) used FCD from both 

taxi fleets and public transport in the German city of Dusseldorf. Public transportation-based data was found to provide 

more accurate results for speed and travel time values. Furthermore, they developed a model to integrate these two 

data sources for estimating traffic states and to identify the most congested locations. 
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3. Methodology 

The method used in this study includes utilization of raw FCD data (with 1-minute measurements) which is 

basically processed to obtain LOS-based traffic states (from 1 to 4) as shown in Figure 1. Using the predetermined 

urban traffic pattern definitions, a simple pattern search algorithm is run to detect urban traffic patterns with their 

locations and observed frequencies. This search can be done using 2 (or more) consecutive segment search (2CSS, 

3CSS, etc.) version of the algorithm, which only requires appropriate pattern definitions as an input. A key issue in 

this algorithm is the definitions of “traffic state” and its process from segment speed values. It is proposed to use 

HCM-based urban LOS intervals, as it solely depends on average speed value. Second issue is the definition of critical 

patterns for urban traffic, which has to be defined based on the traffic states, as well. These will be discussed in the 

following subsections.  

 

Fig.1. Framework of the proposed methodology 

3.1. LOS and state definitions for urban corridors 

LOS is a quantitative measure representing quality of service (HCM, 2010). Generally, 6 different LOS states are 

defined for different road types, where LOS A represents the best operating condition and LOS F the worst. HCM 

(2010) defined LOS for urban roads as “the reductions in travel speed as a percentage of the free-flow speed of the 

corridor”. Table 1 shows speed thresholds and corresponding LOS values based on HCM (2010) for the 50km/hr and 

90km/hr free-flow speeds. In Turkey, urban arterial roads have a legal speed limit of 50 km/hr, which can be increased 

up to 70 km/hr or even 82 km/hr (by a 10% tolerance margin before a penalty is issued, which corresponds to 90 

km/hr in practice) by local government. Assuming a 90 km/hr free-flow on the study corridor, LOS A and LOS B 

states corresponded to speed intervals of “90km/hr - 77 km/hr” and “77 km/hr - 60 km/hr”. Speed intervals for LOS 

C and LOS D correspond to “45km/hr – 60km/hr” and “36km/hr – 45km/hr”. Finally, a segment speed less than 

27km/hr was the worst case, resulting in LOS F. 

Traffic patterns are defined following the LOS definition, based on segment speed on urban arterial roads in HCM 

(2010), as discussed previously. Speed information from FCD is converted to a qualitative “state” parameter (Table 

1), in order to detect critical patterns such as locations facing recurrent congestion, bottleneck release locations etc. 

As the speed limit of the study corridor was registered as 70 km/hr, which was the limit of the recent increase to 82 

km/hr (and 90 km/hr in practice for a speeding penalty) by the municipality, speed data obtained was truncated at 70 

km/hr. Due to this truncation, LOS A and LOS B were defined as a joint state (termed State 1) of “free-flowing 

conditions” for average speeds of more than 60 km/hr. In accordance with the classification by HCM, a stable flow 

state is State 2. LOS D, which represents those conditions “approaching unstable flow”, correspond to State 3 in this 
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study. Unstable flow conditions (LOS E and F) are represented in one single state, State 4, with speeds less than 36 

km/hr.  
 

Table 1. Average speed and corresponding LOS values for the urban roads based on (HCM, 2010). 
 

 

LOS 
Travel Speed as a  

Percentage of Base 

Free-flow Speed 

Travel Speed Intervals (km/hr) 

for  speed limits of    

Assumed 

Traffic State 

50 km/hr 90 km/hr  

A >85 >42.5 >76.5 
1 

B 67-85 33.5<V<42.5 60.3<V<76.5 

C 50-67 25<V<33.5 45<V<60.3 2 
D 40-50 20<V<25 36<V<45 3 

E 30-40 15<V<20 27<V<36 
4 

F <30 <15 <27 

3.2. Critical pattern search 

After transforming average speeds into predefined states, a series of search algorithms were developed to detect 
critical patterns in the urban traffic. Based on the number of segments used in each search, “2 Consecutive Segment 
Search (2CSS)”, “3 Consecutive Segment Search (3CSS)” and “4 Consecutive Segment Search (4CSS)” options were 
used in this study. In these searches, the traffic state in each segment was compared against the traffic state of the 
following segment(s), in order to acquire different patterns such as bottleneck release, persistent congestion, etc. At 
the final stage, all segments were evaluated to detect the frequency and start point of the predefined critical patterns 
in the extensive FCD archive of the corridor. 

Assuming 4 states, as illustrated in Table 1, it is possible to define up to 16 different situations in 2CSS, while more 
complex patterns can be defined in 3CSS and 4CSS. Some of these situations can be further grouped together to 
simplify the analysis and focus on the critical patterns. These patterns assumed for this study for 2CSS and 3CSS are 
shown in Table 2, and explained below: 
 

 Free-flow: This condition is represented by a strictly 1-1 state for the 2CSS. However, more situations are 

simplified as “free-flow conditions” in 3CSS and 4CSS, as shown in Table 2. 

 Stable flow: This pattern represents LOS C conditions for the proposed study. 

 Transition between free-flow and stable flow: This pattern represents transitions between states 1 and 2.  

 Approaching unstable flow: This pattern represents state 3 conditions. 

 Entering congestion: This is the case when sudden reductions in speed were observed. For example, for 

2CSS, state 1 to state 4 or state 2 to state 4 conditions were gathered under this category. 

 Congested flow: This condition is the congested regime that can occur under state 4 (LOS F).  

 Transition between stable and unstable flow: This pattern represents transitions between states 2 (LOS C) 

and 3 (LOS D).  

 Transition between unstable flow and congestion: This pattern represents the transitions between states 3 

(LOS D) and 4 (LOS E/F). 

 Speeding-up: States “3-2-1” and “4-3-2” patterns can be considered as the speed-up condition for the 3CSS 

method.  

 Slowing-down: States “1-2-3” and “2-3-4” patterns can be considered as the slow-down condition for the 

3CSS search. 

 Slowing-down rapidly: This is the case when sudden decreases in speed were observed. For example, for 

2CSS search “state 1” to “state 3” or for the 3CS search states “2-1-3”, “1-1-3” can be considered as fulfilling 

this pattern (see Table 2 for all possibilities). 

 Bottleneck release: The sudden increase in speed is considered as the bottleneck release point. We assumed 

these as involving any changes from state 3 to state 1; state 4 to state 1 or state 2. Furthermore, we noted 

possible queue lengths before the bottleneck release locations for further research, as illustrated in Table 2.  

In 4CSS, 256 possible situations were initially analyzed to search for given critical patterns in Table 2. However, 

further patterns were defined such as bottlenecks with queue lengths in more than 2 segments etc., although these 

definitions are not presented here due to page limits. 
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                                  Table 2. Critical traffic pattern definitions and its frequencies for the 2CSS and 3CSS for the study corridor 

 

Patterns 2CSS Frequency 3CSS Frequency 

Free-flow 1-1 78763 1-1-1; 1-1-2 ; 2-1-1 82117 

Stable flow 2-2 22000 
1-2-2; 2-2-1; 2-2-2; 2-2-3; 

3-2-2 
25496 

Transition between free- 

flow and stable flow 
1-2,2-1 11929 2-1-2; 1-2-1 2986 

Approaching Unstable Flow  3-3 2065 
3-3-2; 3-3-3; 3-3-4; 2-3-3; 
4-3-3 

2869 

Entering congestion 2-4,1-4 1786 

2-2-4; 1-4-3; 1-4-4;  2-1-4 ; 

1-2-4;  1-1-4 ; 2-4-3;  2-4-4 ; 

3-2-4 

2888 

Congested flow 4-4 2349 3-4-4; 4-4-3; 4-4-4 2026 

Transition between stable and 

 unstable flow 
2-3,3-2 3162 2-3-2;  3-2-3 558 

Transition between unstable 

 and congestion 
3-4, 4-3 1941 3-4-3;  4-3-4 272 

Speeding-up - - 3-2-1; 4-3-2 792 

Slowing-down - - 2-3-4;  1-2-3 693 

Slowing-down rapidly 1-3 494 
2-1-3;  1-1-3;1-3-2;  1-3-3 ; 

1-3-4;   
865 

Bottleneck Release 

Queue length ≥1 
3-1, 4-1, 

4-2 
1994 

3-1-1;  3-1-2;  4-2-1;  4-2-2; 

4-2-3;  4-1-1 ; 4-1-2 
1981 

Queue length ≥2 - - 
3-4-1;  3-4-2 ; 3-3-1;  4-4-1 ; 

4-4-2;  4-3-1 
1149 

Queue length=1 - - 
1-3-1;  1-4-1 ; 1-4-2;  2-3-1 ; 
2-4-1;  2-4-2 

845 

4. Numerical Results 

In this section, to better illustrate the proposed methodology, numerical results are presented over an urban corridor 

in Ankara, where FCD was available.  

4.1. Study corridor and FCD data 

The case study includes a 4.5 km corridor on Dumlupınar Boulevard (from Hacettepe University interchange to 

Middle East Technical University entrance), which is a major arterial road in the form of a multilane urban highway 

corridor (4 lanes in each direction) in Ankara, Turkey (Figure 2). The study corridor consists of 134 segments in one 

direction, and the study period was from December, 2015 to February, 2016 for the morning peak-hour period 

(between 07:30-09:00). FCD data in this study is provided by a Belgium-based traffic information provider, which 

delivers real-time average speed data in 1-minute periods for small road segments of lengths shorter than 50m. It 

produces average speed data for road segments, however these results are truncated for the road speed limits. The 

study area includes one section with an electronic speed enforcement point (spot speed enforcement located around 

road Segment ID 27), 3 major grade-separated interchanges (Hacettepe, Bilkent and Middle East Technical University 

(METU)), and a major bus stop near METU interchange (Segment ID 116), as shown in Figure 2.   
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Fig.2. a)  The study corridor and the locations of the 134 road segments and close-up view of b) Bilkent interchange and c) METU Interchange 

(Google maps, 2016) 

4.2. Free-flow frequencies versus critical patterns along the corridor 

Free-flow frequencies along the study corridor showed very similar patterns for the 2CSS, 3CSS and 4CSS 

methods. The free-flow profile of the selected corridor for 2SCC is illustrated in Figure 3. Higher free-flow frequencies 

shown in Figure 3a designate segments that do not face many critical patterns and mostly involve LOS A, whereas 

low frequencies of free-flow cases indicate potential critical patterns that should be analyzed in more detail. These 

critical locations are observed at major interchanges, and before speed enforcement and bus stop locations, as 

expected. Whilst travel speeds are observed at a value much lower than free-flow levels at the Hacettepe interchange, 

this is most likely the impact of slowing down prior to electronic enforcement measures, located immediately after, at 

Segment 27. Traffic conditions at the Bilkent interchange improve along the segments within the interchange, whilst 

the main problems are observed in the upstream segments. Similarly, traffic is mostly free-flowing at the METU 

interchange, while severe congestion is observed at the segments immediately prior to the bus stop close to this 

interchange. 

http://www.google.com.tr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiVs-Lg38XMAhWCuBoKHa26AjEQjRwIBw&url=http://www.sunderland.gov.uk/index.aspx?articleid%3D1288&bvm=bv.121421273,d.ZGg&psig=AFQjCNHsGh8kG3lmpX5NKrbFG2eEkLKg4Q&ust=1462634357206614
http://www.google.com.tr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiVs-Lg38XMAhWCuBoKHa26AjEQjRwIBw&url=http://www.sunderland.gov.uk/index.aspx?articleid%3D1288&bvm=bv.121421273,d.ZGg&psig=AFQjCNHsGh8kG3lmpX5NKrbFG2eEkLKg4Q&ust=1462634357206614
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Fig.3. Critical traffic patterns for the study corridor obtained from 2CSS. 

4.3. Critical patterns at Bilkent Interchange 

A more focused analysis of the non-free flow conditions at and around the Bilkent Interchange reveals further 

details regarding the capabilities of the pattern search algorithm and the FCD. Figure 4a shows the frequencies of 

different transition flow patterns observed at the interchange segments, whereas Figure 4b displays the extent and 

location of congestion observed before the interchange. As expected, a bottleneck release is observed at Segment 71 

and/or 72, which is expected to have 3 segment long queues in the upstream. As can be seen from the results of 

different search length algorithms, searches using only 2 consecutive segments are simple and rapid, but are not 

significantly illustrative of the spatial distribution. On the other hand, critical patterns searched with 3 or 4-segment 

algorithms reveal more information about the length of the congestion, as seen in Figure 4. 
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                                   a) transition flow conditions                             b) congestion conditions 

 

 
c) Bottleneck release conditions  

Fig. 4. The comparisons of the critical traffic patterns around the Bilkent interchange obtained from 2CSS, 3CSS and 4CSS method. 

5. Conclusion 

These results indicate that even though only one parameter (average travel speed from FCD) is used, it is still 

possible to detect critical patterns along urban roads, if data is continuous and extensive. Critical patterns able to be 

detected include persistent congestion due to interchanges, speed enforcement points, bus stops etc. Furthermore, 

bottleneck release points, as well as the length of queue formation in their upstream segments, can be easily identified. 

Use of 2CSS can increase the detection rate, but reveal less information about the spatial extent of the pattern. 

Conversely, the use of longer segment chains (as in 3CSS and 4CSS) in the analysis allows one to identify more 

complex patterns. The real power of the methodology is its flexibility when used for large-scale analyses; many urban 

corridors can be easily assessed retrospectively as well as in real-time. Observing pattern variations over time can 
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reveal more information about the time-varying state of traffic at a given location, or on a network level. This 

methodology can be used alone, or in combination with other traffic data sources.  
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